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Abstract

Two dissimilar isotropic porous media are in welded contact at a plane interface between them. Different sets of boundary

conditions are explained to represent the continuity requirements at the common boundary. These are derived from physically

grounded principles with mathematical check on the conservation of energy. A new parameter is defined to represent the

possible extent of connections between the surface pores of two solids at their common interface. A set of boundary conditions

is derived to represent the partial connection of surface pores at the porous–porous interface. Such a partial connection is

considered as a basis for an imperfect bonding between two saturated porous solids. At the plane interface, the imperfection in

welded bonding is represented by tangential slipping and, hence, results in the dissipation of a part of strain energy.

Three types of waves propagate in an isotropic fluid-saturated porous medium. Incidence of a wave at the interface

results in three reflected and three refracted waves. Partition of incident energy among the reflected and refracted waves is

studied for incidence of each of the three types of waves. Numerical example calculates the energy shares of reflected and

refracted waves at the plane interface between kerosene-saturated sandstone and water-saturated lime-stone. These energy

shares are compared for different sets of boundary conditions discussed in the study.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A poroelastic solid is viewed as an elastic matrix with a Newtonian-fluid filling its connected pores. Dynamic
behavior of fluid-saturated porous media is attracting wide attention due to their importance in modeling the
sedimentary materials encountered in the fields of acoustics, oil exploration, earthquake engineering, soil
dynamics and hydrology. The dynamical equations formulated by Biot [1] have been serving as a basis to study
wave propagation problems in poroelastic media. Biot [2] extended the acoustic propagation theory in the
wider context of the mechanics of porous media. Biot [3] developed the new features of the extended theory,
and obtained new and simplified fundamental equations for wave propagation in poroelastic solids.
Deresiewicz and Skalak [4] extended the Neumann’s uniqueness theorem of elasticity to porous solids and
discovered the boundary conditions to represent the continuity requirements at the boundaries of a porous
solid. Most of the propagation problems in porous media have been solved using these boundary conditions.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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However, in the intervening period, serious efforts [5–9] have been made to work upon these boundary
conditions. Denneman et al. [9] is a recent one that has renewed the attention to the pores, being closed or open.
The studies on wave propagation at a boundary between two different porous media are not very large in
number. These studies, however, explain various applications of the wave propagation through layered porous
media [10–13]. More recently, Vashisth and Khurana [14] studied the wave propagation in stratified porous
media using a transfer matrix approach. The porous layers were assumed transversely isotropic with imperfect
bonding between them. In all of the studies, the pores of two continuing porous media were assumed to be fully
connected. On the other hand, Sharma and Saini [15] discussed the effect of partial connections between the
surface pores of two porous solids on the reflection and refraction at their interface. Pore alignment of two
porous media were related to the difference in the pressures of the pore-fluids at the interface.

Most of the studies on wave propagation in porous media prefer to use the elastodynamics of Biot’s theories
and the boundary conditions of Deresiewicz and Skalak [4], for example, Pride et al. [16], Kaynia and Banerjee
[17], Chen [18], Gurevich and Schoenberg [8], Denneman et al. [9], Sharma [19–21]. For propagation in
stratified media, the assumption that the surface pores of two dissimilar porous media are fully connected at
the interface appears to be a too ideal situation. Hence, the boundary conditions from Deresiewicz and Skalak
[4], representing such an ideal situation, may not be able to provide a true practical solution, particularly,
for simulation studies. A more appropriate solution for such studies may be achieved through a set of more
appropriate boundary conditions. Researchers in the field may agree that attention is very much due to these
four-decades old boundary conditions.

The work presented suggests and discusses the different sets of boundary conditions to represent the
connection between pores at the welded interface. A case of loose contact at the interface is also considered
when the surface pores of two media are not fully connected. A numerical example is computed to observe the
effects of the different sets of boundary conditions on the energy partition among the waves, reflected and
refracted at the porous–porous interface. This study is an effort to provide options in selecting the boundary
conditions for interpretation of real data on wave propagation in porous-layered materials.

2. Wave propagation in poroelastic solids

Following Biot [2,3], a set of differential equations governs the particle motion in an isotropic porous solid
frame saturated by a non-viscous fluid. These equations, in the absence of body forces, are given by

tij;j ¼ r €ui þ rf €wi;

ð�pf Þ;i ¼ rf €ui þ q €wi;
(1)

where tij and pf are the stress components in porous aggregate and fluid pressure, respectively. The ui are the
components of the displacements for the solid and wi are the components of average displacement of fluid
relative to the solid. Indices can take the values 1, 2 and 3. Summation convention is valid for repeated indices.
The comma ð; Þ before an index represents partial space differentiation and dot over a variable represents
partial time derivative. The r and rf are the densities of porous aggregate and pore-fluid, respectively.
The inertial parameter q controls dynamical coupling between fluid and solid phases.

The stresses in the isotropic solid matrix of porous aggregate, following Biot [2], are defined as

sij ¼ ðluk;kÞdij þ mðui;j þ uj;iÞ, (2)

and these are related to tij by

tij ¼ sij þ að�pf Þdij , (3)

through the parameter a to represent the elastic coupling between the two constituents. dij is Kronecker delta.
Finally, using the above relations, the stresses in the porous aggregate and pore-fluid, are expressed as

tij ¼ ½ðlþ a2MÞuk;k þ aMwk;k�dij þ mðui;j þ uj;iÞ,

�pf ¼Mðauk;k þ wk;kÞ, ð4Þ

where l; m; M are the elastic constants.
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To seek the harmonic solution of Eq. (1), for the propagation of plane waves, write

ui ¼ Si expfioðpkxk � tÞg,

wi ¼ F i expfioðpkxk � tÞg ði ¼ 1; 2; 3Þ, ð5Þ

where o is angular frequency and components ðp1; p2; p3Þ define slowness vector p. In terms of phase velocity
V, the slowness vector p ¼ N=V , where the normalized slowness vector N ¼ ðn1; n2; n3Þ represents the direction
of phase propagation. The vectors ðS1;S2;S3Þ and ðF1;F2;F3Þ define the polarizations for the motions of the
solid and fluid particles in the porous medium. Substituting Eq. (5) in Eq. (1) yields a system of six equations,
given by

fðlþ mþ a2MÞnink þ ðm� rV 2ÞdikgSk ¼ ðrf V2dik � aMninkÞFk,

ðrf V 2dik � aMninkÞSk ¼ ðMnink � qV 2dikÞF k. ð6Þ

This system is solved into a relation

Fi ¼ GijSj; C ¼
rf

q
ð�IþNTNÞ �

rf V2 � aM

qV 2 �M
NTN, (7)

and a subsystem, given by

W ikSk ¼ 0; W ¼ gNTNþ hðI�NTNÞ;

g ¼ ðlþ 2mþ a2M � rV 2Þ þ
ðrf V 2 � aMÞ2

qV2 �M
; h ¼ m� r�

r2f
q

 !
V 2;

(8)

where I is a third-order identity matrix and NT denotes the transpose of row matrix N. The expression (7)
relates the displacements (u and w) of two constituents phases in the porous aggregate. The set of Eqs. (8)
explains the propagation phenomenon in the medium. This latter set may be termed as modified
Kelvin–Christoffel equation [22] for wave propagation in isotropic fluid-saturated porous media. Existence
of non-trivial solution of these equations is ensured by

ðrq� r2f ÞV
4 � ½qðlþ 2mþ a2MÞ þ rM � 2rf aM�V 2 þ ðlþ 2mÞM ¼ 0, (9)

ðrq� r2f ÞV
2 � mq ¼ 0. (10)

The roots of quadratic equation (9) define the phase velocities of two longitudinal waves in the porous
medium. The second equation gives the velocity of lone transverse waves in the medium. On replacing q with
qþ iðZ=owÞ, Eqs. (9) and (10) explain the wave propagation in porous media, in the presence of dissipation
represented by pore-fluid viscosity Z and pore permeability w. For high frequency, Z is multiplied with a
correction factor.

Polarization vector ðS1;S2;S3Þ, corresponding to Eq. (9), is calculated to be parallel to N and hence the two
waves with velocities (say, V1 and V 2 ) defined by this equation are longitudinal waves. V1 is assumed to be
greater than V 2. This identifies V 1 and V2 as the velocities of fast P (or Pf ) and slow P (or Ps) waves,
respectively. From Eq. (7), the polarizations of the fluid particles, for two longitudinal waves, are given by the
relation

ðF1;F2;F3Þ ¼ �
rf V2 � aM

qV 2 �M

 !
ðS1;S2;S3Þ; V ¼ V 1; V2. (11)

Similarly, Eqs. (8) and (10) yield polarization vector ðS1;S2;S3Þ, for the lone transverse wave. This is
represented through a row/column of the singular matrix (I�NTN). Such a transverse wave propagates with
velocity, say V3, given by V 2

3 ¼ m=ðr� r2f =qÞ. Corresponding to these waves, the polarization vector
ðF1;F2;F3Þ for the fluid particles is calculated from the relation

ðF 1;F2;F3Þ ¼ �
rf

q

� �
ðS1;S2;S3Þ. (12)
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Eqs. (9) and (10) are same as those obtained in Biot’s theory. But, the significance of the procedure explained above
lies in its different manner which is used, generally, to study three-dimensional wave propagation in anisotropic
media. So the same procedure can yield the corresponding expressions for wave propagation in anisotropic media
and these expressions can be compared/checked at different steps with those derived in this section.

3. Formulation of the problem

Consider two dissimilar saturated non-dissipative isotropic porous solids having a common boundary.
In the Cartesian coordinate system ðx; y; zÞ, let the plane z ¼ 0 define this common boundary which is
separating the two dissimilar porous media (say, M1 and M2). A wave travels through the medium M1

(i.e., z40) with velocity Vo and incident at the interface making an angle yo to the z-axis pointing into this
medium. For two-dimensional motion in the x–z plane, unit vector ðsin yo; 0; cos yoÞ represents phase direction
of the incident wave. The incident angle may vary from 0 to p=2. Such an incidence results in three waves
reflected back into the medium M1 and three waves refracted to the continuing medium M2. The primed ð0Þ
quantities separate the medium M2 from M1. The row vectors ðn

ðkÞ
1 ; n

ðkÞ
2 ; n

ðkÞ
3 Þ; ðk ¼ 1; 2; 3Þ, denote the phase

directions of three reflected waves in porous medium.
The displacements in the porous medium M1 are expressed as

uj ¼ Sj exp io
1

Vo

nkxk � t

� �� �
þ
P3
l¼1

f lS
ðlÞ
j exp io

1

V l

n
ðlÞ
k xk � t

� �� �
;

wj ¼ F j exp io
1

V o

nkxk � t

� �� �
þ
P3
l¼1

f lF
ðlÞ
j exp io

1

Vl

n
ðlÞ
k xk � t

� �� �
ðj ¼ x; y; zÞ;

(13)

where the values 1–3 of index l represent the Pf ;Ps;S waves, respectively. The f l are relative excitation factors
for the three reflected waves. We have n

ðlÞ
j n
ðlÞ
j ¼ 1, and from Snell’s law, n

ðlÞ
1 =vl ¼ sin yo=Vo; n

ðlÞ
2 ¼ 0.

Similarly, for the waves refracted to medium M2, the displacements are expressed as

u0j ¼
P3
l¼1

f 0lS
0ðlÞ
j exp io

1

V 0l
m
ðlÞ
k xk � t

� �� �
;

w0j ¼
P3
l¼1

f 0lF
0ðlÞ
j exp io

1

V 0l
m
ðlÞ
k xk � t

� �� �
ðj ¼ x; y; zÞ:

(14)

The f 0l are relative excitation factors for the refracted waves. We have m
ðlÞ
j m
ðlÞ
j ¼ 1, and from Snell’s law,

m
ðlÞ
1 =V l ¼ sin yo=V o; m

ðlÞ
2 ¼ 0.

4. Boundary conditions

The boundary conditions at a boundary of porous solid come from the physical situations existing there. The
energy consideration for the medium and the continuity equation for fluid-flow are the fundamental requirements.
The energy in a poroelastic body is calculated from the stresses and particle velocities of fluid and solid particles.
In the present geometry of porous–porous contact, energy balance is maintained through the equation

tzz _uz þ tzx _ux � pf _wz ¼ t0zz _u
0
z þ t0zx _u

0
x � p0f _w

0
z. (15)

4.1. Welded-contact interface

Let us start with the simplest case of welded contact interface such that the surface pores of the two media
are fully connected. Following Deresiewicz and Skalak [4], the appropriate boundary conditions to be satisfied
at the interface z ¼ 0, are

ðiÞ tzz ¼ t0zz; ðiiÞ _uz ¼ _u0z; ðiiiÞ tzx ¼ t0zx;

ðivÞ _ux ¼ _u0x; ðvÞ pf ¼ p0f ; ðviÞ _wz ¼ _w0z. (16)
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The boundary conditions (i) and (iii) represent the continuities of normal and tangential stresses between the
two media. Similarly, the conditions (ii) and (iv) ensure the continuities of normal and tangential components
of displacements of solid particles in two porous media. The relation (v) is the continuity of pressures of the
pore-fluids filling the pores on either side of the interface z ¼ 0. These conditions ensure the conservation of
energy at the interface. The boundary condition (vi) does not seem to be satisfying the equation of continuity
for pore-fluids. This is actually a continuity of averaged velocities of the fluids discharged out of the surface
pores. This becomes the continuity equation if rf ¼ r0f , for example, same pore-fluid in the pores on either side
of interface. As an alternative, the boundary conditions (v) and (vi) may change to

ðvÞ p0f =r
0
f ¼ pf =rf ; ðviÞ rf _wz ¼ r0f _w

0
z. (17)

Now, the condition (vi) in Eq. (17) ensures the continuity of mass (not velocity) of the fluid discharged out of
the pores at the interface and hence is the equation of continuity for the interstitial fluids. The boundary
condition (v) in Eq. (17) does not ensure the continuity of fluid pressures at the interface between two media
(except, when both the pore-fluids have the same density) and hence allows the fluid-flow (inside the fully
connected pores) across the interface. An aspect of allowing the fluid-flow across the interface is that the high-
pressure fluid is pushing the low-pressure fluid, for example, oil–water fluid substitution events in reservoirs
[23]. Such a substitution is considered in the horizontal flow of fluids in the reservoir rocks around a producing
well. In that case, the same velocity of fluid particles on either side of (vertical) interface may not allow the
mixing of fluid. Then, due to the same potential energy (per unit mass) in both media, the boundary condition
(v) in Eq. (17) becomes the Bernoulli’s equation ensuring the conservation of energy at the interface. On the
other hand, to avoid the mixing of two pore fluids at the interface, the two conditions (v) and (vi) in Eq. (16)
are changed to

ðvÞ f 0p0f ¼ fpf ; ðviÞ _Uz ¼ _U 0z, (18)

where _Uz defines the normal velocity of fluid particles in _wz ¼ f ð _uz � _UzÞ. The condition (v) represents the
continuity of averaged fluid pressures at the interface and the conservation of energy is not disturbed with
these conditions.

Fully connected pores at the interface, as used by Deresiewicz and Skalak [4], may not be a realistic
situation. For example, the surface pores at the common (plane) boundary of two porous media may not
connect fully, even when they have same porosity. Hence, a new parameter is required to represent
the effective connections between the surface-pores of two media at the interface. Let this parameter, f, be
defined as

f ¼
minðf ; f 0Þ

maxðf ; f 0Þ
n, (19)

where f and f 0 are porosities of the two porous media. The value of f lies between 0 and 1. The value of f can
be zero when, either n ¼ 0 or one of the porosities is zero. That means no connection between pores at the
interface. The value 1 of f means fully connected pores and can be achieved only when f ¼ f 0 and n ¼ 1. So, n
acts as a likelihood parameter that may be defined as the probability that the surface pores of two porous
solids of same porosity are fully connected. Moreover, instead of pore pressure, the fluid discharge out of the
pores should depend upon the differential pressure (difference between normal stress in porous matrix and
fluid pressure) existing in the porous aggregate. In terms of differential stress components the energy balance
equation (15) is rewritten as

tzzð _uz þ _wzÞ þ tzx _ux � ðpf þ tzzÞ _wz ¼ t0zzð _u
0
z þ _w0zÞ þ t0zx _u

0
x � ðp

0
f þ t0zzÞ _w

0
z. (20)

The boundary conditions are defined as

ðiÞ tzz ¼ t0zz; ðiiÞ _uz þ _wz ¼ _u0z þ _w0z; ðiiiÞ tzx ¼ t0zx; ðivÞ _ux ¼ _u0x;

ðvÞ fðpf þ tzzÞ ¼ Zð1� fÞ _w0z; ðviÞ fðp
0
f þ t0zzÞ ¼ Zð1� fÞ _wz, (21)

where Z (a constant) is assumed to be a non-zero, finite value for surface flow impedance [9], when the pores
are partially connected (i.e., 0ofo1Þ. These boundary conditions do not disturb the conservation of energy
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at the interface. These conditions involve two parameters Z and f, but, in fact, a single unknown
(i.e., Zð1� fÞ=f) is relating the differential stress and fluid discharge on either side of the interface.

For an ideal but non-realistic situation given by f ¼ 1, the above boundary conditions reduce to

ðvÞ pf þ tzz ¼ 0; ðviÞ p0f þ t0zz ¼ 0. (22)

This provides an alternative to the boundary conditions (v) and (vi) in Eq. (16) for fully connected pores. For a
theoretical case of no connection between the surface pores of two media, the value f ¼ 0 changes these two
boundary conditions to

ðvÞ _wz ¼ 0; ðviÞ _w0z ¼ 0, (23)

which are same as obtained in Ref. [4].

4.2. Loose contact interface

When the surface pores are not fully connected then, at the interface, pore-fluid of one medium will be in
contact with the solid surface of the other medium. In aggregate, such a contact will be weaker than the welded
contact, generally assumed, between two solids. This may be termed as loose contact and is represented by the
presence of a thin layer of fluid at the common surface between two porous media. For loose bonding between
the two media, following Vashisth et al. [24], the boundary condition (iv) changes to

ðivÞ ctzx ¼ ð1� cÞTð _ux � _u0xÞ, (24)

where, the parameter c, in ð0; 1Þ, represents the loose bonding from smooth contact ðc ¼ 0Þ to welded contact
ðc ¼ 1Þ. The impedance T is a non-zero finite positive value and represent the resistance to the free discharge
of pore-fluid at the interface. The tangential stress at the interface is proportional to the tangential slip allowed
at the interface due to loose bonding. Such a frictional slip should dissipate a part of energy at the interface.
Hence, in deviation from the welded contact, at the loosely bonded interface (0oco1) represented by
condition (24), the energy conservation is achieved with its dissipated part. In this case, the sum of the energies
of reflected and refracted waves at the interface will be smaller than the incident energy.

5. Reflection and refraction coefficients

Distribution of energy among the reflected and refracted waves is considered across a surface element of
unit area at the plane z ¼ 0. The scalar product of surface traction and particle velocity per unit area, denoted
by P�, represents the rate at which the energy is communicated per unit area of the surface. The time average
of P� over a period, denoted by hP�i, represents the average intensity of energy transmission. On the surface
with normal along z-direction, the average energy intensities of the waves in a porous medium are defined by

hP�jki ¼ 0:5Re½tðjÞzz conjð _u
ðkÞ
z Þ þ tðjÞzx conjð _u

ðkÞ
x Þ þ ð�p

ðjÞ
f Þ conjð _w

ðkÞ
z Þ� ðj; k ¼ 1; 2; 3Þ. (25)

With hP�I i defining the energy intensity of the incident wave, an energy matrix Ejk ¼ hP
�
jki=hP

�
I i ðj; k ¼ 1; 2; 3Þ,

calculates the distribution of energy among the three waves traveling into the poroelastic medium. Sum of all
the off-diagonal entries of this energy matrix gives the share of interaction energy among the different waves in
the medium. In case of non-dissipative isotropic medium, these entries form a skew-symmetric matrix and the
resultant interaction energy vanishes. The magnitude of the diagonal entries of E, however, represent the
energy shares of the three reflected waves in the medium. Let E11;E22;E33 be termed as the reflection
coefficients for Pf ;Ps;S waves, respectively. Similarly, another matrix E0jk calculates the energy ratios (termed
as refraction coefficients) of the waves refracted to the continuing medium. A relation, given by
E011 þ E022 þ E033 þ E11 þ E22 þ E33 ¼ 1, ensures the conservation of energy across the interface.

The displacements defined in Eqs. (13) and (14) are used in the boundary conditions at the interface between
two porous solids. The six boundary conditions, defined in previous section, are satisfied through a system of
six linear inhomogeneous equations inn f 1; f 2; f 3 and f 01; f

0
2; f
0
3. This system is solved numerically through

Gauss elimination method. Solution is, then, used to calculate the energy ratios Eij and E 0ij and, hence, to
check the conservation of energy.
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6. Numerical example

Purpose of the numerical example is to check the impact of suggested boundary conditions on the
propagation of three waves across the interface between two dissimilar poroelastic solids. The medium chosen
for the numerical example is the kerosene-saturated sandstone in contact with water-saturated limestone.
Following Yew and Jogi [25], the values of relevant coefficients for the two porous solids are as follows:
(i)
0

0

0

0

P
f

0.

0.

0.

P
s

0

0

0

S

Fig. 1.

and wa
for kerosene-saturated sandstone (medium M1):

l ¼ 2:771GPa; m ¼ 2:765GPa; M ¼ 4:873GPa; a ¼ 0:85;

r ¼ 2137 kg=m3; rf ¼ 820 kg/m3; q ¼ 3316 kg=m3; f ¼ 0:26:
(ii)
 for water-saturated limestone (medium M2):

l0 ¼ 1:444GPa; m0 ¼ 12:09GPa; M 0 ¼ 15:91GPa; a0 ¼ 0:262;

r ¼ 2240 kg/m3; r0f ¼ 1000 kg/m3; q0 ¼ 6944 kg/m3; f 0 ¼ 0:144:
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numerical values are used to calculate the reflection and refraction coefficients of Pf ;Ps and S
These
waves. Incidence of each of the three (Pf ;Ps;SÞ waves is considered with angle of incidence varying
from 0 to p=2. Variations of these coefficients with the incident direction are plotted in Figs. 1–7. Details are as
follows.

For the welded interface with fully connected surface pores, as defined by boundary conditions (16),
variations of reflection and refraction coefficients are plotted in Fig. 1. The corresponding coefficients for the
alternate boundary conditions, as defined in Eq. (17), are shown in Fig. 2. The no-mixing of pore fluids are
represented by conditions (18) and the corresponding energy partition in this case is as shown in Fig. 3. For a
fixed value of impedance constant Z ¼ 2MPa s=m, the energy shares of reflected and refracted waves at the
interface with partial pore-connections (i.e., n ¼ 0:1; 0:5; 1Þ, are shown in Fig. 4. Effect of a change in the value
of impedance constant (i.e., Z ¼ 0:1, 2, 5MPa s/m) on energy partition is exhibited in Fig. 5, for the pore-
connections defined by n ¼ 0:5.

Fig. 6 presents energy partition at the loosely bonded interface (c ¼ 0:3, 0.6, 0.9) between two porous solids
when their surface-pores are partially connected (n ¼ 0:9). The surface flow impedance is fixed with
Z ¼ T ¼ 1MPa s/m. For the case of imperfect (or loose) bonding between two solids, the sum of energy
shares of reflected and refracted waves is less than one. This implies that a part of the incident energy is
dissipated at the interface. The dissipated energy changes with the values of impedance T and bonding
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Fig. 2. Same as Fig. 1, but with alternate boundary conditions allowing fluid flow in pores across the interface.
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Fig. 3. Same as Fig. 1, but with boundary conditions to avoid mixing of pore-fluids in fully connected pores.
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parameter c. Fig. 7. shows the variations of this energy with incident direction for T ¼ 0:1, 1, 10MPa s/m and
c ¼ 0:1, 0.5, 0.9.

7. Discussion of numerical results

Fig. 1 shows the variations in energy partition with the angle of incidence when the surface pores are fully
connected at the welded interface between two porous media. The boundary conditions of Deresiewicz and
Skalak [4], given by Eq. (16), are used. For incident Pf waves, the energy is shared mainly among Pf and S

waves. Refracted Ps waves are stronger than the reflected Ps waves. Similarly, for the incidence of Ps waves,
the reflected and refracted Pf waves are very weak. Reflected Ps waves from incident S waves are much
stronger when compared to those from incident Pf wave.

The energy partition in Fig. 2 is also at the welded interface with fully connected pores, but with alternate
boundary conditions (17). These boundary conditions ensure the equation of continuity for the fluid-flow
(in pores) across the interface. The reflected and refracted Ps waves, from incident Pf wave, are much stronger
than in Fig. 1. These Ps waves get the additional energies from refracted Pf wave. The energies of reflected and
refracted S waves are the least affected with the change in boundary conditions. For incident Ps wave,



ARTICLE IN PRESS

0 20 40 60 80
0

0.2

0.4

0.6

0.8

P
f

Incident Pf

0 20 40 60 80

0.2

0.4

0.6

P
s

0 30 60 90
0

0.1

0.2

0.3

S

Incident angle (deg.)

0 20 40 60 80
0

0.2

0.4

Incident Ps

ν=0.1(refl.)
ν=0.1(refr.)
ν=0.5(refl.)
ν=0.5(refr.)
ν=1(refl.)
ν=1(refr.)

0 20 40 60 80
0

0.5

1

0 30 60 90
0

0.2

0.4

0.6

0.8

Incident angle (deg.)

0 20 40 60 80
0

0.1

0.2

0.3
Incident S

0 20 40 60 80
0

0.2

0.4

0.6

0.8

0 30 60 90
0

0.2

0.4

0.6

0.8

Incident angle (deg.)

Fig. 4. Energy partition at welded interface between kerosene-saturated sandstone and water-saturated limestone, for partially connected

pores; fixed impedance Z ¼ 2MPa s/m.
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reflected/refracted Pf and refracted Ps waves get stronger at the cost of reflected Ps wave. The reflected and
refracted S waves are almost unaffected. These alternative boundary conditions do not show much effect on
the reflection/refraction response of incident S wave. The little effect is observed only on the variations of
reflected Ps and S energies with incident direction. In general, the comparison of respective plots in Figs. 1 and
2 explain the effects of changes made in boundary conditions to ensure the equation of continuity for pore-
fluids across the interface.

Fig. 3 exhibits the energy partition corresponding to the boundary conditions assuming the non-mixing of
two pore-fluids at their interface in connecting pores. In comparison to Fig. 2, for incident Pf wave, the
reflected/refracted Ps waves gain energy out of the shares of Pf and S waves. For incident Ps wave, the
reflected/refracted energies of Pf and S waves may be doubled for some incident directions. Near normal
incidence, refracted Ps wave gains energy and even achieve total refraction when the incidence angle is about
25�. Such a total refraction is not observed in Fig. 1 or 2. At the incidence of S wave, beyond the critical angles
of Pf waves, the energies of reflected/refracted Ps waves are nearly double to that observed in Fig. 2. These
gains in Ps energies are coming from the share of reflected S waves.

Fig. 4 shows the energy partition when the surface pores at the porous–porous interface are genuinely
connected. The effects on the energy shares are observed for the different values of likelihood parameter n. The
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Fig. 5. Same as Fig. 4, but for different impedances (in MPa s/m) and fixed n ¼ 0:5.
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major effect of the partial pore-connection is the gain in energy share of Ps waves, when the incident waves are
Pf or S waves. This gain is more significant when less pores are connected (i.e., n is small). For incidence of Pf

waves after the critical angle for refracted Pf waves, increase of n weakens the refracted Pf waves but
strengthens the reflected Pf waves. The refracted Ps waves are the strongest for the intermediate value of n
whereas the reflected Ps waves get stronger with the increase of n. The increase of n, however, weakens both
reflected and refracted S waves resulting from the incident Pf waves. For incident Ps waves, large changes in
energy shares are observed with the change in the connections between surface pores at the interface.
However, the effects of this change are nearly opposite on reflected and refracted waves. For incident S waves,
the Pf waves appear to be less affected with the change in n, while other two waves are affected significantly.
Near grazing or normal incidence of S waves, pore-connection level seems to have no effect on energy
partition.

Fig. 5 displays the effect of surface flow impedance (Z) on the energy shares of reflected and refracted waves.
An increase of surface flow impedance shows a significant effect on the energy shares of all the reflected and
refracted waves, but for the larger values of Z. For example, it is calculated that for values of Z, sufficiently
less than 1MPa s/m, the change in Z has negligible effect on the energy partition. The effect of Z is matters
more for its value increasing away from 1MPa s/m. It is also noted that a change in impedance has no effect
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Fig. 6. Energy partition at loosely bonded interface between kerosene-saturated sandstone and water-saturated limestone; fixed n ¼ 0:5;
fixed impedance Z ¼ T ¼ 1MPa s/m.

M.D. Sharma / Journal of Sound and Vibration 314 (2008) 657–671668
near grazing incidence of any of the three waves. For the normal incidence of any of the P waves, the
impedance shows its effect on the reflected and refracted P waves only.

Fig. 6 exhibits the effect of loose bonding on energy partition but for pore-connections defined by n ¼ 0:9.
For incidence of Pf waves beyond the critical angle for refracted Pf waves, the reflected Pf waves get stronger
with the increase in bonding parameter c. In this case, the reflected and refracted S waves are the strongest for
the smaller values of c. The reflected (refracted) Ps waves strengthen (weaken) with the increase of c. For
incident Ps waves, the effect of c is observed mainly on reflected Ps waves and a little on reflected S waves.
Refracted waves are the least affected with the change in bonding status. For incident S waves, the effect of c
is quite clear on reflected waves. Reflected S (P) waves weaken (strengthen) from the decrease of c from 1 to 0.
Refracted waves, however, strengthen with the increase of c. From this figure it is clear that the reflected and
refracted waves are not sharing the incident energy completely. The part of energy dissipated due to loose
bonding is shown in Fig. 7. It is observed that the energy dissipation is minimum (i.e., zero) when the contact
is either smooth (i.e., c ¼ 0) or the contact is either welded (i.e., c ¼ 1). For the intermediate values of c, the
dissipated energy may amount to be more than half of the incident energy. Is may be noted from Fig. 7 that
for a fixed value of T ¼ 0:1MPa s=m, energy dissipation increases with the increase of bonding parameter c.
On the other hand, for T ¼ 10MPa s=m, energy dissipation decreases with the increase of c.
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Fig. 7. Variations in the dissipation of energy at the interface with impedance T and bonding parameter c.
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For T ¼ 1MPa s=m, energy dissipation is maximum when c ¼ 0:5 and decreases on either side. This may
imply that for nearly smooth bonding, the increase of T increases the energy dissipation whereas, for nearly
welded bonding, the dissipation decreases with the increase of impedance T. For incident P waves, the energy
dissipation is minimum for normal as well as grazing incidence. For incident S waves, maximum dissipation is
observed for normal incidence and minimum for grazing incidence. A steep rise/fall in energy dissipation is
noticed when incident direction comes across a critical angle.

8. Concluding remarks

This study considers the different sets of boundary conditions between two dissimilar porous solids and
calculates their effect on the energy partition among reflected and refracted waves. The changes in reflection/
refraction coefficients are analyzed for a particular numerical model with different values of parameters for
pore-connection, loose bonding and impedance. The few conclusions drawn from this analysis may be
explained as follows.
(i)
 Deviation from the equation of continuity for pore-fluid may not have much effect on the energy
partition, particularly when the densities of the two fluids filling the pores on either side are nearly same.
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Else, such a deviation will become an inherent source of error in the mathematical model of the problem.
Moreover, effect of this deviation is observed, mainly, on the strength of Ps wave, which separates the
poroelastic propagation from the elastic one.
(ii)
 The no-mixing restriction on the pore-fluids is also showing its effect on the reflected and refracted Ps

waves. This is significant because of the diagnostic importance of the wave in understanding the fluid
dynamism in the saturated porous rocks.
(iii)
 Partial pore-connections have significant effect on the longitudinal waves whereas transverse waves are
less affected. Among the longitudinal waves, the refracted Ps wave gains most at the cost of Pf waves.
(iv)
 Surface flow impedance shows a significant effect on the energy partition but only when its value
increases beyond a particular value (e.g., 1MPa s/m in this study).
(v)
 Near grazing incidence, the effect of pore-connections and impedance is negligible. SðPÞ waves are
unaffected even at the normal incidence of PðSÞ waves. For the normal incidence of S waves, the energy
partition is unaffected with the changes in pore-connections and impedance.
(vi)
 Presence of tangential slip at the interface may strengthen the S waves from the incidence of P waves.
Similarly, reflected P waves from the incident S waves gain strength when the contact between solids
allows slip at the interface.
(vii)
 The energy dissipation at a loose boundary is smaller for the incident Pf wave as compared to the
incidence of Ps and S waves.
This study puts forward some new combinations of boundary conditions at the porous–porous boundary.
The suggested combinations represent some realistic physical situations. The energy conservation is kept in
mind while translating physical situations into boundary conditions. These boundary conditions may be able
to provide more accurate solutions to the problems of dynamics in porous materials. It is very much
acceptable that there may be some more combinations of these types that may represent the remaining and
possible situations. Author feels that the researchers in the field of structural engineering and exploration may
prefer to use the proposed conditions in the simulation studies. The dissipation of a part of energy due to
wave-induced slip at the loosely bonded interface certifies the important role of fluid-saturated porous solid
layers in sound/shock absorbing packages. The wave propagation procedure explained in Section 2 is
presented in a different manner which can be modified with much convenience for a similar study in
anisotropic media.
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